Study of the molecular mechanisms of Epidermolysis Bullosa Simplex using human pluripotent stem cells
Etude des mécanismes moléculaires de l'épidermolyse bulleuse simple à partir de cellules souches humaines induites à la pluripotence
Résumé
Epidermolysis bullosa simplex (EBS) is a skin disorder caused mainly by dominant mutations in genes coding for keratin 5 (KRT5) or 14 (KRT14) genes. It is characterized by the presence of blisters caused by epidermal detachment, and by other complications such as cutaneous inflammation. From a genetic point of view, the mutations will alter the assembly of the keratin intermediate filament network in basal keratinocytes of the epidermis, leading to cell cytolysis and the formation of intra-epidermal blisters. Currently no effective therapeutic approach it is available. Understanding of the disease and the development of therapies have been hampered by the lack and limitations of relevant human cell and mouse models.So, the general aim of my thesis was to exploit the properties of human induced pluripotent stem cells (hiPSc) to modelling EBS. For this purpose, we generate hiPSc-derived keratinocytes from EBS patients carrying KRT5 mutations (Ker-EBS), and from healthy patients (Ker-WT). Comparison of Ker-EBS and Ker-WT enabled to show that Ker-EBS recapitulates the main phenotypes associated with EBS, namely decreased cell proliferation, increased cell migration, altered signalling pathways (ERK and JNK), as well as aggregates of intermediate keratin filaments in the cytoplasm, as observed in primary EBS keratinocytes. These results demonstrate that our hiPSc-derived cell model is relevant for study EBS.In order to identify new molecular mechanisms, a trancriptomic analysis comparing Ker-EBS with Ker-WT revealed 138 deregulated genes, revealing an enrichment in processes linked to the extracellular matrix, DNA packaging and the inflammatory response. As the inflammatory component in EBS has been poorly described, my next step was to study the pro-inflammatory cytokine phenotype. Thus, we were able to demonstrate increased expression of IL-1α, IL-1β, IL-6, IL-8 (CXCL8), CXCL5, CXCL10, CXCL11, CCL5 in Ker-EBS, at RNA level under basal or IFNy-stimulated conditions to mimic a pro-inflammatory context. Only the chemokines CXCL10 and CXCL11 are secreted at high concentrations in the culture supernatants of stimulated and unstimulated Ker-EBS, demonstrating the involvement of these cytokines in EBS.In parallel, in order to avoid biases due to genetic background, gender, patient age and epigenetics, we generated an isogenic Ker-EBS line (corrected Ker-EBS) using the CRISPR-Cas9 technique. We were thus able to demonstrate that the corrected Ker-EBS line showed a restoration of the expression level of the pro-inflammatory cytokines mentioned above, to a level close to that of Ker-WT, confirming a direct link between mutations in the KRT5 gene and the pro-inflammatory signature.In conclusion, our new cellular model enabled us to reproduce the pathological phenotypes known in the literature, and to demonstrate deregulation of pro-inflammatory cytokine expression in EBS, notably CXCL10 and CXCL11. Taken together, these results make this model a relevant tool to allow a better understanding of the molecular mechanisms associated with the pathology, particularly the inflammatory component, paving the way for new therapeutic approaches.
L'Epidermolyse bulleuse simplex (EBS) est une maladie cutanée principalement causée par des mutations dominantes dans les gènes codant les kératines 5 (KRT5) ou 14 (KRT14). Elle se caractérise notamment par la présence de cloques causées par un décollement de l'épiderme et une inflammation cutanée. D'un point de vue génétique, les mutations vont altérer l'assemblage du réseau de filaments intermédiaires de kératines dans les kératinocytes basaux de l'épiderme et entrainer une cytolyse cellulaire d'où la formation de cloques intra épidermiques. Il n'existe actuellement aucune approche thérapeutique efficace. La compréhension de la maladie et le développement de thérapies, ont été entravées par le manque de modèles cellulaires humains et murins relevant.Ainsi, l'objectif général de ma thèse a consisté à exploiter les propriétés des cellules souches induites à la pluripotence (hiPSc) pour modéliser l'EBS. Dans ce but, nous avons généré des kératinocytes à partir d'hiPSc provenant de patients EBS porteurs de mutations dans le gène KRT5 (Ker-EBS), et de patients sains (Ker-WT). La comparaison des Ker-EBS et Ker-WT nous a permis de montrer que les Ker-EBS récapitulent les principaux phénotypes associés à l'EBS à savoir une diminution de la prolifération cellulaire, une augmentation de la migration cellulaire, une altération des voies de signalisation (ERK et JNK), ainsi que des agrégats de filaments intermédiaires de kératines dans le cytoplasme, tel qu'observé dans kératinocytes primaires de l'EBS. Ces résultats démontrent que notre modèle cellulaire dérivés d'hiPSc est relevant pour l'étude de l'EBS.Afin d'identifier de nouveaux mécanismes moléculaires, une analyse trancriptomique comparant les Ker-EBS aux Ker-WT, a mis en évidence 138 gènes dérégulés, révélant un enrichissement dans les processus liés à la matrice extracellulaire, au packaging de l'ADN et à la réponse inflammatoire. La composante inflammatoire dans l'EBS n'ayant été que peu décrite, la suite de mes travaux a consisté à étudier le phénotype cytokinique pro-inflammatoire. Ainsi, nous avons pu démontrer, une augmentation de l'expression de l'IL-1α, IL-1β, IL-6, IL-8 (CXCL8), CXCL5, CXCL10, CXCL11, CCL5 dans les Ker-EBS, au niveau ARN en condition basale ou stimulée à l'IFNγ pour mimer un contexte pro- inflammatoire. Seules les chemokines CXCL10 et CXCL11 sont secrétées à forte concentration dans le surnagent de culture des Ker-EBS stimulés ou non, démontrant l'implication de ces cytokines dans l'EBS. En parallèle, afin de s'affranchir des biais notamment dus au fond génétique, au sexe, à l'âge des patients et à l'épigénétique, nous avons généré une lignée de Ker-EBS isogénique (Ker-EBS corrigée) par la technique CRISPR-Cas9. Nous avons ainsi pu démontrer que la lignée de Ker-EBS corrigée montrait une restauration du niveau d'expression des cytokines pro-inflammatoires citées précédemment, à un niveau proche des Ker-WT, confirmant un lien direct entre les mutations du gène KRT5 et la signature pro-inflammatoire. Pour conclure, notre nouveau modèle cellulaire nous a permis de reproduire les phénotypes pathologiques connus dans la littérature et de mettre en évidence une dérégulation de l'expression des cytokines pro-inflammatoire dans l'EBS, notamment CXCL10 et CXCL11. Enfin, l'ensemble de ces résultats font de ce modèle un outil pertinent pour permettre une meilleure compréhension des mécanismes moléculaires associés à la pathologie, notamment la composante inflammatoire, ce qui ouvre la voie à de nouvelles approches thérapeutiques.
Origine | Version validée par le jury (STAR) |
---|