index - Machine Learning and Knowledge Extraction
   


Full Text Documents

Chargement de la page

Search

Chargement de la page

Table of Contents
Machine Learning and Knowledge Extraction
Andreas Holzinger, Peter Kieseberg, a Min Tjoa, Edgar Weippl
Front Matter
Explainable Artificial Intelligence: Concepts, Applications, Research Challenges and Visions
Luca Longo, Randy Goebel, Freddy Lecue, Peter Kieseberg, Andreas Holzinger
1-16
The Explanation Game: Explaining Machine Learning Models Using Shapley Values
Luke Merrick, Ankur Taly
17-38
Back to the Feature: A Neural-Symbolic Perspective on Explainable AI
Andrea Campagner, Federico Cabitza
39-55
Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification
Xiaoxiao Li, João Saúde
57-76
Explainable Reinforcement Learning: A Survey
Erika Puiutta, Eric Veith
77-95
A Projected Stochastic Gradient Algorithm for Estimating Shapley Value Applied in Attribute Importance
Grah Simon, Thouvenot Vincent
97-115
Explaining Predictive Models with Mixed Features Using Shapley Values and Conditional Inference Trees
Annabelle Redelmeier, Martin Jullum, Kjersti Aas
117-137
Explainable Deep Learning for Fault Prognostics in Complex Systems: A Particle Accelerator Use-Case
Lukas Felsberger, Andrea Apollonio, Thomas Cartier-Michaud, Andreas Müller, Benjamin Todd, Dieter Kranzlmüller
139-158
eXDiL: A Tool for Classifying and eXplaining Hospital Discharge Letters
Fabio Mercorio, Mario Mezzanzanica, Andrea Seveso
159-172
Cooperation Between Data Analysts and Medical Experts: A Case Study
Judita Rokošná, František Babič, Ljiljana Majnarić, Ľudmila Pusztová
173-190
A Study on the Fusion of Pixels and Patient Metadata in CNN-Based Classification of Skin Lesion Images
Fabrizio Nunnari, Chirag Bhuvaneshwara, Abraham Ezema, Daniel Sonntag
191-208
The European Legal Framework for Medical AI
David Schneeberger, Karl Stöger, Andreas Holzinger
209-226
An Efficient Method for Mining Informative Association Rules in Knowledge Extraction
Parfait Bemarisika, André Totohasina
227-247
Interpretation of SVM Using Data Mining Technique to Extract Syllogistic Rules
Sanjay Samuel, Nik Abdullah, Anil Raj
249-266
Non-local Second-Order Attention Network for Single Image Super Resolution
Jiawen Lyn, Sen Yan
267-279
ML-ModelExplorer: An Explorative Model-Agnostic Approach to Evaluate and Compare Multi-class Classifiers
Andreas Theissler, Simon Vollert, Patrick Benz, Laurentius Meerhoff, Marc Fernandes
281-300
Subverting Network Intrusion Detection: Crafting Adversarial Examples Accounting for Domain-Specific Constraints
Martin Teuffenbach, Ewa Piatkowska, Paul Smith
301-320
Scenario-Based Requirements Elicitation for User-Centric Explainable AI
Douglas Cirqueira, Dietmar Nedbal, Markus Helfert, Marija Bezbradica
321-341
On-the-fly Black-Box Probably Approximately Correct Checking of Recurrent Neural Networks
Franz Mayr, Ramiro Visca, Sergio Yovine
343-363
Active Learning for Auditory Hierarchy
William Coleman, Charlie Cullen, Ming Yan, Sarah Delany
365-384
Improving Short Text Classification Through Global Augmentation Methods
Vukosi Marivate, Tshephisho Sefara
385-399
Interpretable Topic Extraction and Word Embedding Learning Using Row-Stochastic DEDICOM
Lars Hillebrand, David Biesner, Christian Bauckhage, Rafet Sifa
401-422
A Clustering Backed Deep Learning Approach for Document Layout Analysis
Rhys Agombar, Max Luebbering, Rafet Sifa
423-430
Calibrating Human-AI Collaboration: Impact of Risk, Ambiguity and Transparency on Algorithmic Bias
Philipp Schmidt, Felix Biessmann
431-449
Applying AI in Practice: Key Challenges and Lessons Learned
Lukas Fischer, Lisa Ehrlinger, Verena Geist, Rudolf Ramler, Florian Sobieczky, Werner Zellinger, Bernhard Moser
451-471
Function Space Pooling for Graph Convolutional Networks
Padraig Corcoran
473-483
Analysis of Optical Brain Signals Using Connectivity Graph Networks
Marco Pinto-Orellana, Hugo Hammer
485-497
Property-Based Testing for Parameter Learning of Probabilistic Graphical Models
Anna Saranti, Behnam Taraghi, Martin Ebner, Andreas Holzinger
499-515
An Ensemble Interpretable Machine Learning Scheme for Securing Data Quality at the Edge
Anna Karanika, Panagiotis Oikonomou, Kostas Kolomvatsos, Christos Anagnostopoulos
517-534
Inter-space Machine Learning in Smart Environments
Amin Anjomshoaa, Edward Curry
535-549

 


Designed by Inria-IES Team : http://hal.inria.fr/    Hosted by HAL : http://hal.archives-ouvertes.fr/